Abstract
The process of wound healing consists of multiple phases, and any disruptions in these phases can lead to the wound becoming chronic and impose heavy financial and psychological costs on the patient and a huge economic burden on the country’s healthcare system. Various treatments such as drugs, matrix and scaffolds, blood products, cell therapy, and a combination of these treatments are used for wound healing. The use of mesenchymal stem cells (MSCs) is one of these methods that have produced appropriate responses in the healing of patients’ wounds. MSCs by secreting growth factors, cytokines, chemokines, and RNAs elicit changes in cell proliferation, migration, growth, signaling, immunomodulation, and wound re-epithelialization process, and as a result, accelerate wound closure and wound healing. These cells can be isolated from different body sources with different cell characteristics and used directly on the wound site or by injection. In addition, MSCs-derived exosomes have attracted growing attention due to circumventing concerns relating to the direct use of MSCs. To increase the performance of MSCs, they can be used together with other compounds such as platelets, matrices, or scaffolds. This study examined the functions of MSCs in wound healing, as well as the vesicles they secrete, cellular and molecular mechanisms, and combined treatments with MSCs for wound healing.
This is a preview of subscription content, log in via an institution to check access.
Similar content being viewed by others
Mesenchymal Stromal Cells for Wound Healing Therapy: From Expectations to Reality
Chapter © 2023
Mesenchymal Stromal Cells for Wound Healing Therapy: From Expectations to Reality
Chapter © 2024
The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: a comprehensive review
Article Open access
24 January 2022
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.
Cell Therapy
Mesenchymal stem cells
Mesenchymal Migration
Multipotent Stem Cells
Skin stem cells
Stem-cell therapies
References
Huang, Y.-Z., Gou, M., Da, L.-C., Zhang, W.-Q., & Xie, H.-Q. (2020). Mesenchymal Stem Cells for Chronic Wound Healing: Current Status of Preclinical and Clinical Studies. Tissue Engineering Part B: Reviews, 26(6), 555–570.
Article
PubMed
CAS
Google Scholar
Prakoeswa, C. R. S., Rindiastuti, Y., Wirohadidjojo, Y. W., Komaratih, E., Nurwasis, & Dinaryati, A., et al. (2020). Resveratrol promotes secretion of wound healing related growth factors of mesenchymal stem cells originated from adult and fetal tissues. Artificial cells, nanomedicine, and biotechnology, 48(1), 1160–1167.
Article
PubMed
Google Scholar
Liu, L., Yu, Y., Hou, Y., Chai, J., Duan, H., & Chu, W., et al. (2014). Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats. PloS one, 9(2), e88348.
Article
PubMed
PubMed Central
Google Scholar
Li, J.-Y., Ren, K.-K., Zhang, W.-J., Xiao, L., Wu, H.-Y., & Liu, Q.-Y., et al. (2019). Human amniotic mesenchymal stem cells and their paracrine factors promote wound healing by inhibiting heat stress-induced skin cell apoptosis and enhancing their proliferation through activating PI3K/AKT signaling pathway. Stem Cell Research & Therapy, 10(1), 247.
Article
Google Scholar
Yaghoubi, Y., Hassanzadeh, A., Naimi, A., Abdolahi, S., Yousefi, M., & Aghebati-Maleki, L., et al. (2021). The Effect of Platelet Lysate on Expansion and Differentiation Megakaryocyte Progenitor Cells from Cord Blood CD34+ enriched Cells. SSU, 11(3), 172–182.
Google Scholar
Zamani, M., Yaghoubi, Y., Movassaghpour, A., Shakouri, K., Mehdizadeh, A., & Pishgahi, A., et al. (2019). Novel therapeutic approaches in utilizing platelet lysate in regenerative medicine: Are we ready for clinical use? Journal of cellular physiology, 234(10), 17172–17186.
Article
PubMed
CAS
Google Scholar
Yari, H., Mikhailova, M. V., Mardasi, M., Jafarzadehgharehziaaddin, M., Shahrokh, S., & Thangavelu, L., et al. (2022). Emerging role of mesenchymal stromal cells (MSCs)-derived exosome in neurodegeneration-associated conditions: a groundbreaking cell-free approach. Stem Cell Res Ther, 13(1), 423.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tsai, H.-W., Wang, P.-H., & Tsui, K.-H. (2018). Mesenchymal stem cell in wound healing and regeneration. Journal of the Chinese Medical Association, 81(3), 223–224.
Article
PubMed
Google Scholar
Yaghoubi, Y., Movassaghpour, A., Zamani, M., Talebi, M., Mehdizadeh, A., & Yousefi, M. (2019). Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment. Life Sciences, 233, 116733.
Article
PubMed
CAS
Google Scholar
Tavakoli, S., Ghaderi Jafarbeigloo, H. R., Shariati, A., Jahangiryan, A., Jadidi, F., & Jadidi Kouhbanani, M. A., et al. (2020). Mesenchymal stromal cells; a new horizon in regenerative medicine. Journal of Cellular Physiology, 235(12), 9185–9210.
Article
PubMed
CAS
Google Scholar
Rangatchew, F., Vester-Glowinski, P., Rasmussen, B. S., Haastrup, E., Munthe-Fog, L., & Talman, M. L., et al. (2021). Mesenchymal stem cell therapy of acute thermal burns: A systematic review of the effect on inflammation and wound healing. Burns: Journal of the International Society for Burn Injuries, 47(2), 270–294.
Article
PubMed
Google Scholar
Levoux, J., Prola, A., Lafuste, P., Gervais, M., Chevallier, N., & Koumaiha, Z., et al. (2021). Platelets Facilitate the Wound-Healing Capability of Mesenchymal Stem Cells by Mitochondrial Transfer and Metabolic Reprogramming. Cell Metabolism, 33(2), 283–99.e9.
Article
PubMed
CAS
Google Scholar
Marusina, A. I., Merleev, A. A., Luna, J. I., Olney, L., Haigh, N. E., & Yoon, D., et al. (2020). Tunable hydrogels for mesenchymal stem cell delivery: Integrin-induced transcriptome alterations and hydrogel optimization for human wound healing. Stem Cells (Dayton, Ohio), 38(2), 231–245.
Article
PubMed
CAS
Google Scholar
Jin, M. H., Yu, N. N., Jin, Y. H., Mao, Y. Y., Feng, L., & Liu, Y., et al. (2021). Peroxiredoxin II with dermal mesenchymal stem cells accelerates wound healing. Aging, 13(10), 13926–13940.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yaghoubi, Y., Zamani, M., Naimi, A., Hassanzadeh, A., Gharibeh, N., & Madani, J., et al. (2020). Human CD34+ hematopoietic stem cells culture in humanized culture medium for cell therapy. Gene Reports, 20, 100718.
Article
CAS
Google Scholar
Hajimortezayi, Z., Daei, N., Gholizadeh, N., Zakeri, M., Alhili, F., & Hasanzadeh, S., et al. (2024). Fat transplant: Amazing growth and regeneration of cells and rebirth with the miracle of fat cells. Journal of Cosmetic Dermatology, 23(4), 1141–1149.
Article
PubMed
Google Scholar
Shoja, A., Sani, M., Mirzohreh, S. T., Ebrahimi, M. J., Moafi, M., Balaghirad, N., et al. (2024). Dental stem cells improve memory and reduce cell death in rat seizure model. Anatomical Science International.
Kim, J. Y., & Suh, W. (2010). Stem cell therapy for dermal wound healing. International Journal of Stem Cells, 3(1), 29–31.
Article
PubMed
PubMed Central
Google Scholar
Zamani, M., Yaghoubi, Y., Naimi, A., Hassanzadeh, A., Pourakbari, R., & Aghebati-Maleki, L., et al. (2021). Humanized Culture Medium for Clinical-Grade Generation of Erythroid Cells from Umbilical Cord Blood CD34(+) Cells. Advanced Pharmaceutical Bulletin, 11(2), 335–342.
PubMed
CAS
Google Scholar
Malekan, M., Haass, N. K., Rokni, G. R., Gholizadeh, N., Ebrahimzadeh, M. A., & Kazeminejad, A. (2024). VEGF/VEGFR axis and its signaling in melanoma: Current knowledge toward therapeutic targeting agents and future perspectives. Life Sciences, 345, 122563.
Article
PubMed
CAS
Google Scholar
Yang, J., Chen, Z., Pan, D., Li, H., & Shen, J. (2020). Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration. International Journal of Nanomedicine, 15, 5911–5926.
Article
PubMed
PubMed Central
CAS
Google Scholar
Esteban-Vives, R., Ziembicki, J., Sun Choi, M., Thompson, R. L., Schmelzer, E., & Gerlach, J. C. (2019). Isolation and Characterization of a Human Fetal Mesenchymal Stem Cell Population: Exploring the Potential for Cell Banking in Wound Healing Therapies. Cell Transplantation, 28(11), 1404–1419.
Article
PubMed
PubMed Central
Google Scholar
Yang, Z., He, C., He, J., Chu, J., Liu, H., & Deng, X. (2018). Curcumin-mediated bone marrow mesenchymal stem cell sheets create a favorable immune microenvironment for adult full-thickness cutaneous wound healing. Stem Cell Research and Therapy, 9(1), 21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hosni Ahmed, H., Rashed, L. A., Mahfouz, S., Elsayed Hussein, R., Alkaffas, M., & Mostafa, S., et al. (2017). Can mesenchymal stem cells pretreated with platelet-rich plasma modulate tissue remodeling in a rat with burned skin? Biochemistry and Cell Biology = Biochimie et biologie cellulaire, 95(5), 537–548.
Article
PubMed
CAS
Google Scholar
Liang, X., Ding, Y., Zhang, Y., Tse, H. F., & Lian, Q. (2014). Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplantation, 23(9), 1045–1059.
Article
PubMed
Google Scholar
Maxson, S., Lopez, E. A., Yoo, D., Danilkovitch-Miagkova, A., & Leroux, M. A. (2012). Concise review: role of mesenchymal stem cells in wound repair. STEM CELLS Translational Medicine, 1(2), 142–149.
Article
PubMed
PubMed Central
CAS
Google Scholar
Luz-Crawford, P., Djouad, F., Toupet, K., Bony, C., Franquesa, M., & Hoogduijn, M. J., et al. (2016). Mesenchymal Stem Cell-Derived Interleukin 1 Receptor Antagonist Promotes Macrophage Polarization and Inhibits B Cell Differentiation. Stem Cells (Dayton, Ohio), 34(2), 483–492.
Article
PubMed
CAS
Google Scholar
Abumaree, M. H., Al Jumah, M. A., Kalionis, B., Jawdat, D., Al Khaldi, A., & Abomaray, F. M., et al. (2013). Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Reviews and Reports, 9(5), 620–641.
Article
PubMed
CAS
Google Scholar
Colwell, A. S., Beanes, S. R., Soo, C., Dang, C., Ting, K., & Longaker, M. T., et al. (2005). Increased angiogenesis and expression of vascular endothelial growth factor during scarless repair. Plastic and Reconstructive Surgery, 115(1), 204–212.
Article
PubMed
CAS
Google Scholar
Hu, M. S., Borrelli, M. R., Lorenz, H. P., Longaker, M. T., & Wan, D. C. (2018). Mesenchymal Stromal Cells and Cutaneous Wound Healing: A Comprehensive Review of the Background, Role, and Therapeutic Potential. Stem Cells International, 2018, 6901983.
Article
PubMed
PubMed Central
Google Scholar
Wang, L., Hu, L., Zhou, X., Xiong, Z., Zhang, C., & Shehada, H. M. A., et al. (2021). Author Correction: Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Science Report, 11(1), 3245.
Article
CAS
Google Scholar
Jiang, T., Wang, Z., & Sun, J. (2020). Human bone marrow mesenchymal stem cell-derived exosomes stimulate cutaneous wound healing mediates through TGF-β/Smad signaling pathway. Stem Cell Research and Therapy, 11(1), 198.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shi, R., Jin, Y., Hu, W., Lian, W., Cao, C., & Han, S., et al. (2020). Exosomes derived from mmu_circ_0000250-modified adipose-derived mesenchymal stem cells promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1-mediated autophagy. American Journal of Physiology Cell Physiology, 318(5), C848–C856.
Article
PubMed
CAS
Google Scholar
Zhang, Y., Han, F., Gu, L., Ji, P., Yang, X., & Liu, M., et al. (2020). Adipose mesenchymal stem cell exosomes promote wound healing through accelerated keratinocyte migration and proliferation by activating the AKT/HIF-1α axis. Journal of Molecular Histology, 51(4), 375–383.
Article
PubMed
Google Scholar
Zhou, Y., Zhao, B., Zhang, X.-L., Lu, Y.-J., Lu, S.-T., & Cheng, J., et al. (2021). Combined topical and systemic administration with human adipose-derived mesenchymal stem cells (hADSC) and hADSC-derived exosomes markedly promoted cutaneous wound healing and regeneration. Stem Cell Research & Therapy, 12(1), 257.
Article
CAS
Google Scholar
Krasnodembskaya, A., Song, Y., Fang, X., Gupta, N., Serikov, V., & Lee, J. W., et al. (2010). Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells (Dayton, Ohio), 28(12), 2229–2238.
Article
PubMed
CAS
Google Scholar
Mei, S. H., Haitsma, J. J., Dos Santos, C. C., Deng, Y., Lai, P. F., & Slutsky, A. S., et al. (2010). Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. American Journal of Respiratory and Critical Care Medicine, 182(8), 1047–1057.
Article
PubMed
CAS
Google Scholar
Manier, S., Liu, C. J., Avet-Loiseau, H., Park, J., Shi, J., & Campigotto, F., et al. (2017). Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood, 129(17), 2429–2436.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tutuianu, R., Rosca, A. M., Iacomi, D. M., Simionescu, M., Titorencu, I. (2021). Human Mesenchymal Stromal Cell-Derived Exosomes Promote In Vitro Wound Healing by Modulating the Biological Properties of Skin Keratinocytes and Fibroblasts and Stimulating Angiogenesis. International Journal of Molecular Sciences, 22(12), 6239
Guo, L., Du, J., Yuan, D.-F., Zhang, Y., Zhang, S., & Zhang, H.-C., et al. (2020). Optimal H2O2 preconditioning to improve bone marrow mesenchymal stem cells’ engraftment in wound healing. Stem Cell Research & Therapy, 11(1), 434.
Article
CAS
Google Scholar
Heo, J. S., Kim, S., Yang, C. E., Choi, Y., Song, S. Y., & Kim, H. O. (2021). Human Adipose Mesenchymal Stem Cell-Derived Exosomes: A Key Player in Wound Healing. Tissue Engineering and Regenerative Medicine, 18(4), 537–548.
Article
PubMed
PubMed Central
CAS
Google Scholar
Heo, J. S., Choi, Y., & Kim, H. O. (2019). Adipose-Derived Mesenchymal Stem Cells Promote M2 Macrophage Phenotype through Exosomes. Stem Cells International, 2019, 7921760.
Article
PubMed
PubMed Central
Google Scholar
Koken, G. Y., Abamor, E. S., Allahverdiyev, A., & Karaoz, E. (2022). Wharton Jelly Derived Mesenchymal Stem Cell’s Exosomes Demonstrate Significant Antileishmanial and Wound Healing Effects in Combination with Aloe-Emodin: An in Vitro Study. Journal of Pharmaceutical Sciences, 111(12), 3232–3242.
Article
PubMed
CAS
Google Scholar
Bakadia, B. M., Qaed Ahmed, A. A., Lamboni, L., Shi, Z., Mutu Mukole, B., & Zheng, R., et al. (2023). Engineering homologous platelet-rich plasma, platelet-rich plasma-derived exosomes, and mesenchymal stem cell-derived exosomes-based dual-crosslinked hydrogels as bioactive diabetic wound dressings. Bioactive Materials, 28, 74–94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang, X., Ding, P., Chen, Y., Lin, Z., Zhao, X., & Xie, H. (2023). Human umbilical cord mesenchymal stem cell-derived exosomes combined with gelatin methacryloyl hydrogel to promote fractional laser injury wound healing. The International Wound Journal, 20(10), 4040–4049.
Article
PubMed
Google Scholar
Wu, D., Tao, S., Zhu, L., Zhao, C., & Xu, N. (2024). Chitosan Hydrogel Dressing Loaded with Adipose Mesenchymal Stem Cell-Derived Exosomes Promotes Skin Full-Thickness Wound Repair. ACS Applied Bio Materials, 7(2), 1125–1134.
Article
PubMed
CAS
Google Scholar
Yang, S., Chen, S., Zhang, C., Han, J., Lin, C., & Zhao, X., et al. (2023). Enhanced therapeutic effects of mesenchymal stem cell-derived extracellular vesicles within chitosan hydrogel in the treatment of diabetic foot ulcers. Journal of Materials Science: Materials in Medicine, 34(9), 43.
PubMed
CAS
Google Scholar
Wang, Y., Song, P., Wu, L., Su, Z., Gui, X., & Gao, C., et al. (2023). In situ photo-crosslinked adhesive hydrogel loaded with mesenchymal stem cell-derived extracellular vesicles promotes diabetic wound healing. Journal of Materials Chemistry B, 11(4), 837–851.
Article
PubMed
CAS
Google Scholar
Lin, H., Chen, H., Zhao, X., Chen, Z., Zhang, P., & Tian, Y., et al. (2021). Advances in mesenchymal stem cell conditioned medium-mediated periodontal tissue regeneration. Journal of Translational Medicine, 19(1), 456.
Article
PubMed
PubMed Central
Google Scholar
Gunawardena, T. N. A., Rahman, M. T., Abdullah, B. J. J., & Abu Kasim, N. H. (2019). Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 13(4), 569–586.
Article
PubMed
CAS
Google Scholar
Delfi, I., Wood, C. R., Johnson, L. D. V., Snow, M. D., Innes, J. F., Myint, P., et al. (2020). An In Vitro Comparison of the Neurotrophic and Angiogenic Activity of Human and Canine Adipose-Derived Mesenchymal Stem Cells (MSCs): Translating MSC-Based Therapies for Spinal Cord Injury. Biomolecules, 10(9), 1301.
Jin, S., Yang, C., Huang, J., Liu, L., Zhang, Y., & Li, S., et al. (2020). Conditioned medium derived from FGF-2-modified GMSCs enhances migration and angiogenesis of human umbilical vein endothelial cells. Stem Cell Research & Therapy, 11(1), 68.
Article
CAS
Google Scholar
Joseph, A., Baiju, I., Bhat, I. A., Pandey, S., Bharti, M., & Verma, M., et al. (2020). Mesenchymal stem cell-conditioned media: A novel alternative of stem cell therapy for quality wound healing. Journal of Cellular Physiology, 235(7-8), 5555–5569.
Article
PubMed
CAS
Google Scholar
Alireza, P., Rozita, A., Seyed Kazem, S., Mohammad Sadegh, S.-Z., Shahla, D., Sepideh Ranjbar, K., et al. (2020). Effect of Dextrose Prolotherapy, Platelet Rich Plasma and Autologous Conditioned Serum on Knee Osteoarthritis: A Randomized Clinical Trial. Iranian Journal of Allergy, Asthma and Immunology. 19(3), 243–252.
Pishgahi, A., Zamani, M., Mehdizadeh, A., Roshangar, L., Afkham-Daghdaghan, M., & Pourabbas, B., et al. (2022). The therapeutic effects of autologous conditioned serum on knee osteoarthritis: an animal model. BMC Research Notes, 15(1), 277.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang, Z., Li, Z., Li, Y., Wang, Y., Yao, M., & Zhang, K., et al. (2021). Sodium alginate/collagen hydrogel loaded with human umbilical cord mesenchymal stem cells promotes wound healing and skin remodeling. Cell and Tissue Research, 383(2), 809–821.
Article
PubMed
CAS
Google Scholar
Sukmana, B. I., Margiana, R., Almajidi, Y. Q., Almalki, S. G., Hjazi, A., & Shahab, S., et al. (2023). Supporting wound healing by mesenchymal stem cells (MSCs) therapy in combination with scaffold, hydrogel, and matrix; State of the art. Pathology – Research and Practice, 248, 154575.
Article
PubMed
CAS
Google Scholar
Daneste, H., Mohammadzadeh Boukani, L., Ramezani, N., Asadi, F., Zaidan, H. K., & Sadeghzade, A., et al. (2023). Combination therapy along with mesenchymal stem cells in wound healing; the state of the art. Advances in Medical Sciences, 68(2), 441–449.
Article
PubMed
CAS
Google Scholar
Huang, J. N., Cao, H., Liang, K. Y., Cui, L. P., & Li, Y. (2022). Combination therapy of hydrogel and stem cells for diabetic wound healing. World J Diabetes, 13(11), 949–961.
Article
PubMed
PubMed Central
Google Scholar
Sharma, S., Kulkarni, C., Kulkarni, M. M., Ali, R., Porwal, K., & Chattopadhyay, N., et al. (2020). Tripeptide-induced modulation of mesenchymal stem cell biomechanics stimulates proliferation and wound healing. Chemical Communications, 56(20), 3043–3046.
Article
PubMed
CAS
Google Scholar
Safaeinejad, Z., Nabiuni, M., Peymani, M., Ghaedi, K., Nasr-Esfahani, M. H., & Baharvand, H. (2017). Resveratrol promotes human embryonic stem cells self-renewal by targeting SIRT1-ERK signaling pathway. European Journal of Cell Biology, 96(7), 665–672.
Article
PubMed
CAS
Google Scholar
Peltz, L., Gomez, J., Marquez, M., Alencastro, F., Atashpanjeh, N., & Quang, T., et al. (2012). Resveratrol exerts dosage and duration dependent effect on human mesenchymal stem cell development. PloS One, 7(5), e37162.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ganbarjeddi, S., Azimi, A., Zadi Heydarabad, M., Hemmatzadeh, M., Mohammadi, S., & Mousavi Ardehaie, R., et al. (2020). Apoptosis Induced by Prednisolone Occurs without Altering the Promoter Methylation of BAX and BCL-2 Genes in Acute Lymphoblastic Leukemia Cells CCRF-CEM. Asian Pacific Journal of Cancer Prevention, 21(2), 523–529.
Article
PubMed
PubMed Central
CAS
Google Scholar
Danaii, S., Abolhasani, R., Soltani-Zangbar, M. S., Zamani, M., Mehdizadeh, A., & Amanifar, B., et al. (2020). Oxidative stress and immunological biomarkers in Ankylosing spondylitis patients. Gene Reports, 18, 100574.
Article
Google Scholar
Jin, M. H., Yu, J. B., Sun, H. N., Jin, Y. H., Shen, G. N., Jin, C. H., et al. (2019). Peroxiredoxin II Maintains the Mitochondrial Membrane Potential against Alcohol-Induced Apoptosis in HT22 Cells. Antioxidants (Basel, Switzerland), 9(1), 1.
Han, Y. H., Jin, M. H., Jin, Y. H., Yu, N. N., Liu, J., & Zhang, Y. Q., et al. (2020). Deletion of Peroxiredoxin II Inhibits the Growth of Mouse Primary Mesenchymal Stem Cells Through Induction of the G(0)/G(1) Cell-cycle Arrest and Activation of AKT/GSK3β/β-Catenin Signaling. In Vivo (Athens, Greece), 34(1), 133–141.
PubMed
CAS
Google Scholar
Wang, L., & Ganly, I. (2014). The oral microbiome and oral cancer. Clinics in Laboratory Medicine, 34(4), 711–719.
Article
PubMed
Google Scholar
Herremans, K. M., Riner, A. N., Cameron, M. E., McKinley, K. L., Triplett, E. W., & Hughes, S. J., et al. (2022). The oral microbiome, pancreatic cancer and human diversity in the age of precision medicine. Microbiome, 10(1), 93.
Article
PubMed
PubMed Central
Google Scholar
Sarao, L. K., & Arora, M. (2017). Probiotics, prebiotics, and microencapsulation: A review. Critical Reviews in Food Science and Nutrition, 57(2), 344–371.
Article
PubMed
CAS
Google Scholar
Han, N., Jia, L., Guo, L., Su, Y., Luo, Z., & Du, J., et al. (2020). Balanced oral pathogenic bacteria and probiotics promoted wound healing via maintaining mesenchymal stem cell homeostasis. Stem Cell Research & Therapy, 11(1), 61.
Article
CAS
Google Scholar
Kasuya, A., & Tokura, Y. (2014). Attempts to accelerate wound healing. Journal of Dermatological Science, 76(3), 169–172.
Article
PubMed
Google Scholar
Lindley, L. E., Stojadinovic, O., Pastar, I., & Tomic-Canic, M. (2016). Biology and Biomarkers for Wound Healing. Plastic and Reconstructive Surgery, 138(3 Suppl), 18s–28s.
Article
PubMed
CAS
Google Scholar
Su, Y., Chen, C., Guo, L., Du, J., Li, X., & Liu, Y. (2018). Ecological Balance of Oral Microbiota Is Required to Maintain Oral Mesenchymal Stem Cell Homeostasis. Stem Cells (Dayton, Ohio), 36(4), 551–561.
Article
PubMed
CAS
Google Scholar
Noël, D., Caton, D., Roche, S., Bony, C., Lehmann, S., & Casteilla, L., et al. (2008). Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Experimental Cell Research, 314(7), 1575–1584.
Article
PubMed
Google Scholar
Hassanzadeh, A., Altajer, A. H., Rahman, H. S., Saleh, M. M., Bokov, D. O., & Abdelbasset, W. K., et al. (2021). Mesenchymal Stem/Stromal Cell-Based Delivery: A Rapidly Evolving Strategy for Cancer Therapy. Frontiers in Cell and Developmental Biology, 9, 686453.
Article
PubMed
PubMed Central
Google Scholar
Ashour, R. H., Saad, M.-A., Sobh, M.-A., Al-Husseiny, F., Abouelkheir, M., & Awad, A., et al. (2016). Comparative study of allogenic and xenogeneic mesenchymal stem cells on cisplatin-induced acute kidney injury in Sprague-Dawley rats. Stem Cell Research & Therapy, 7(1), 126.
Article
Google Scholar
Li, C., Zhao, H., Cheng, L., & Wang, B. (2021). Allogeneic vs. autologous mesenchymal stem/stromal cells in their medication practice. Cell & Bioscience, 11(1), 187.
Article
CAS
Google Scholar
Shariati, A., Nemati, R., Sadeghipour, Y., Yaghoubi, Y., Baghbani, R., & Javidi, K., et al. (2020). Mesenchymal stromal cells (MSCs) for neurodegenerative disease: A promising frontier. European Journal of Cell Biology, 99(6), 151097.
Article
PubMed
CAS
Google Scholar
Hu, C. H., Tseng, Y. W., Chiou, C. Y., Lan, K. C., Chou, C. H., & Tai, C. S., et al. (2019). Bone marrow concentrate-induced mesenchymal stem cell conditioned medium facilitates wound healing and prevents hypertrophic scar formation in a rabbit ear model. Stem Cell Research and Therapy, 10(1), 275.
Article
PubMed
PubMed Central
Google Scholar
Ma, T., Fu, B., Yang, X., Xiao, Y., & Pan, M. (2019). Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing. Journal of Cellular Biochemistry, 120(6), 10847–10854.
Article
PubMed
CAS
Google Scholar
Qiu, X., Liu, J., Zheng, C., Su, Y., Bao, L., & Zhu, B., et al. (2020). Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis. Cell Proliferation, 53(8), e12830.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li, X., Xie, X., Lian, W., Shi, R., Han, S., & Zhang, H., et al. (2018). Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Experimental & Molecular Medicine, 50(4), 1–14.
Article
Google Scholar
Liang, X., Lin, F., Ding, Y., Zhang, Y., Li, M., & Zhou, X., et al. (2021). Conditioned medium from induced pluripotent stem cell-derived mesenchymal stem cells accelerates cutaneous wound healing through enhanced angiogenesis. Stem Cell Research & Therapy, 12(1), 295.
Article
CAS
Google Scholar
Li, X., Wang, Y., Shi, L., Li, B., Li, J., & Wei, Z., et al. (2020). Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes. Journal of Nanobiotechnology, 18(1), 113.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shukla, A., Choudhury, S., Chaudhary, G., Singh, V., Prabhu, S. N., & Pandey, S., et al. (2021). Chitosan and gelatin biopolymer supplemented with mesenchymal stem cells (Velgraft®) enhanced wound healing in goats (Capra hircus): Involvement of VEGF, TGF and CD31. Journal of Tissue Viability, 30(1), 59–66.
Article
PubMed
Google Scholar
Chen, Z., Zhang, B., Shu, J., Wang, H., Han, Y., & Zeng, Q., et al. (2021). Human decellularized adipose matrix derived hydrogel assists mesenchymal stem cells delivery and accelerates chronic wound healing. Journal of Biomedical Materials Research Part A, 109(8), 1418–1428.
Article
PubMed
CAS
Google Scholar
Ni, X., Shan, X., Xu, L., Yu, W., Zhang, M., & Lei, C., et al. (2021). Adipose-derived stem cells combined with platelet-rich plasma enhance wound healing in a rat model of full-thickness skin defects. Stem Cell Research and Therapy, 12(1), 226.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ebrahim, N., Dessouky, A. A., Mostafa, O., Hassouna, A., Yousef, M. M., & Seleem, Y., et al. (2021). Adipose mesenchymal stem cells combined with platelet-rich plasma accelerate diabetic wound healing by modulating the Notch pathway. Stem Cell Research and Therapy, 12(1), 392.
Article
PubMed
PubMed Central
CAS
Google Scholar
Song, Y., You, Y., Xu, X., Lu, J., Huang, X., & Zhang, J., et al. (2023). Adipose-Derived Mesenchymal Stem Cell-Derived Exosomes Biopotentiated Extracellular Matrix Hydrogels Accelerate Diabetic Wound Healing and Skin Regeneration. Advanced Science, 10(30), e2304023.
Article
PubMed
Google Scholar
Martin, K. E., Hunckler, M. D., Chee, E., Caplin, J. D., Barber, G. F., & Kalelkar, P. P., et al. (2023). Hydrolytic hydrogels tune mesenchymal stem cell persistence and immunomodulation for enhanced diabetic cutaneous wound healing. Biomaterials, 301, 122256.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lashkari, M., Rahmani, M., Yousefpoor, Y., Ahmadi-Zeidabadi, M., Faridi-Majidi, R., & Ameri, Z., et al. (2023). Cell-based wound dressing: Bilayered PCL/gelatin nanofibers-alginate/collagen hydrogel scaffold loaded with mesenchymal stem cells. International Journal of Biological Macromolecules, 239, 124099.
Article
PubMed
CAS
Google Scholar
Khandan-Nasab, N., Mahdipour, E., Askarian, S., Kalantari, M. R., Ramezanian, N., & Kazemi Oskuee, R. (2023). Design and characterization of adipose-derived mesenchymal stem cell loaded alginate/pullulan/hyaluronic acid hydrogel scaffold for wound healing applications. International Journal of Biological Macromolecules, 241, 124556.
Article
PubMed
CAS
Google Scholar
Kwon, J. W., Savitri, C., An, B., Yang, S. W., & Park, K. (2023). Mesenchymal stem cell-derived secretomes-enriched alginate/ extracellular matrix hydrogel patch accelerates skin wound healing. Biomaterials Research, 27(1), 107.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tammam, B. M. H., Habotta, O. A., El-Khadragy, M., Abdel Moneim, A. E., & Abdalla, M. S. (2023). Therapeutic role of mesenchymal stem cells and platelet-rich plasma on skin burn healing and rejuvenation: A focus on scar regulation, oxido-inflammatory stress and apoptotic mechanisms. Heliyon, 9(9), e19452.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu, L., Yao, S., Mao, X., Fang, Z., Yang, C., & Zhang, Y. (2023). Thermosensitive hydrogel coupled with sodium ascorbyl phosphate promotes human umbilical cord-derived mesenchymal stem cell-mediated skin wound healing in mice. Scientific Reports, 13(1), 11909.
Article
PubMed
PubMed Central
CAS
Google Scholar
Iacopetti, I., Perazzi, A., Patruno, M., Contiero, B., Carolo, A., & Martinello, T., et al. (2023). Assessment of the quality of the healing process in experimentally induced skin lesions treated with autologous platelet concentrate associated or unassociated with allogeneic mesenchymal stem cells: preliminary results in a large animal model. Frontiers in Veterinary Science, 10, 1219833.
Article
PubMed
PubMed Central
Google Scholar
Download references
Author information
Authors and Affiliations
Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
Soheil Nouri
Orthopedic and Pelvic Ward, Mortaz Hospital, Yazd, Iran
Shahram Shokraneh
Faculty of Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
Paradise Fatehi Shalamzari
College of Dentistry, Alnoor University, Mosul, Iraq
Mareb Hamed Ahmed
Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
Usama Kadem Radi
Al-Zahrawi University College, Karbala, Iraq
Ameer Hassan Idan
Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Mohammad Javad Ebrahimi & Maral Moafi
Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
Nasim Gholizadeh
Contributions
All authors contributed to the conception and the main idea of the work. S.N., S.S., P.F.S., M.H.A., U.K.R. drafted the main text, figures, and tables. N.G. and M.M. supervised the work and provided comments and additional scientific information. A.H.I. and M.J.E. reviewed and revised the text. All authors read and approved the final version of the work to be published.
Corresponding author
Correspondence to Nasim Gholizadeh.
Ethics declarations
Conflict of Interest
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.