Application of Mesenchymal Stem Cells and Exosome alone or Combination Therapy as a Treatment Strategy for Wound Healing

Recent Post

Tags

Abstract
The process of wound healing consists of multiple phases, and any disruptions in these phases can lead to the wound becoming chronic and impose heavy financial and psychological costs on the patient and a huge economic burden on the country’s healthcare system. Various treatments such as drugs, matrix and scaffolds, blood products, cell therapy, and a combination of these treatments are used for wound healing. The use of mesenchymal stem cells (MSCs) is one of these methods that have produced appropriate responses in the healing of patients’ wounds. MSCs by secreting growth factors, cytokines, chemokines, and RNAs elicit changes in cell proliferation, migration, growth, signaling, immunomodulation, and wound re-epithelialization process, and as a result, accelerate wound closure and wound healing. These cells can be isolated from different body sources with different cell characteristics and used directly on the wound site or by injection. In addition, MSCs-derived exosomes have attracted growing attention due to circumventing concerns relating to the direct use of MSCs. To increase the performance of MSCs, they can be used together with other compounds such as platelets, matrices, or scaffolds. This study examined the functions of MSCs in wound healing, as well as the vesicles they secrete, cellular and molecular mechanisms, and combined treatments with MSCs for wound healing.

This is a preview of subscription content, log in via an institution to check access.

Similar content being viewed by others

Mesenchymal Stromal Cells for Wound Healing Therapy: From Expectations to Reality
Chapter © 2023

Mesenchymal Stromal Cells for Wound Healing Therapy: From Expectations to Reality
Chapter © 2024

The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: a comprehensive review
Article Open access
24 January 2022
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.
Cell Therapy
Mesenchymal stem cells
Mesenchymal Migration
Multipotent Stem Cells
Skin stem cells
Stem-cell therapies
References
Huang, Y.-Z., Gou, M., Da, L.-C., Zhang, W.-Q., & Xie, H.-Q. (2020). Mesenchymal Stem Cells for Chronic Wound Healing: Current Status of Preclinical and Clinical Studies. Tissue Engineering Part B: Reviews, 26(6), 555–570.

Article

PubMed

CAS

Google Scholar

Prakoeswa, C. R. S., Rindiastuti, Y., Wirohadidjojo, Y. W., Komaratih, E., Nurwasis, & Dinaryati, A., et al. (2020). Resveratrol promotes secretion of wound healing related growth factors of mesenchymal stem cells originated from adult and fetal tissues. Artificial cells, nanomedicine, and biotechnology, 48(1), 1160–1167.

Article

PubMed

Google Scholar

Liu, L., Yu, Y., Hou, Y., Chai, J., Duan, H., & Chu, W., et al. (2014). Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats. PloS one, 9(2), e88348.

Article

PubMed

PubMed Central

Google Scholar

Li, J.-Y., Ren, K.-K., Zhang, W.-J., Xiao, L., Wu, H.-Y., & Liu, Q.-Y., et al. (2019). Human amniotic mesenchymal stem cells and their paracrine factors promote wound healing by inhibiting heat stress-induced skin cell apoptosis and enhancing their proliferation through activating PI3K/AKT signaling pathway. Stem Cell Research & Therapy, 10(1), 247.

Article

Google Scholar

Yaghoubi, Y., Hassanzadeh, A., Naimi, A., Abdolahi, S., Yousefi, M., & Aghebati-Maleki, L., et al. (2021). The Effect of Platelet Lysate on Expansion and Differentiation Megakaryocyte Progenitor Cells from Cord Blood CD34+ enriched Cells. SSU, 11(3), 172–182.

Google Scholar

Zamani, M., Yaghoubi, Y., Movassaghpour, A., Shakouri, K., Mehdizadeh, A., & Pishgahi, A., et al. (2019). Novel therapeutic approaches in utilizing platelet lysate in regenerative medicine: Are we ready for clinical use? Journal of cellular physiology, 234(10), 17172–17186.

Article

PubMed

CAS

Google Scholar

Yari, H., Mikhailova, M. V., Mardasi, M., Jafarzadehgharehziaaddin, M., Shahrokh, S., & Thangavelu, L., et al. (2022). Emerging role of mesenchymal stromal cells (MSCs)-derived exosome in neurodegeneration-associated conditions: a groundbreaking cell-free approach. Stem Cell Res Ther, 13(1), 423.

Article

PubMed

PubMed Central

CAS

Google Scholar

Tsai, H.-W., Wang, P.-H., & Tsui, K.-H. (2018). Mesenchymal stem cell in wound healing and regeneration. Journal of the Chinese Medical Association, 81(3), 223–224.

Article

PubMed

Google Scholar

Yaghoubi, Y., Movassaghpour, A., Zamani, M., Talebi, M., Mehdizadeh, A., & Yousefi, M. (2019). Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment. Life Sciences, 233, 116733.

Article

PubMed

CAS

Google Scholar

Tavakoli, S., Ghaderi Jafarbeigloo, H. R., Shariati, A., Jahangiryan, A., Jadidi, F., & Jadidi Kouhbanani, M. A., et al. (2020). Mesenchymal stromal cells; a new horizon in regenerative medicine. Journal of Cellular Physiology, 235(12), 9185–9210.

Article

PubMed

CAS

Google Scholar

Rangatchew, F., Vester-Glowinski, P., Rasmussen, B. S., Haastrup, E., Munthe-Fog, L., & Talman, M. L., et al. (2021). Mesenchymal stem cell therapy of acute thermal burns: A systematic review of the effect on inflammation and wound healing. Burns: Journal of the International Society for Burn Injuries, 47(2), 270–294.

Article

PubMed

Google Scholar

Levoux, J., Prola, A., Lafuste, P., Gervais, M., Chevallier, N., & Koumaiha, Z., et al. (2021). Platelets Facilitate the Wound-Healing Capability of Mesenchymal Stem Cells by Mitochondrial Transfer and Metabolic Reprogramming. Cell Metabolism, 33(2), 283–99.e9.

Article

PubMed

CAS

Google Scholar

Marusina, A. I., Merleev, A. A., Luna, J. I., Olney, L., Haigh, N. E., & Yoon, D., et al. (2020). Tunable hydrogels for mesenchymal stem cell delivery: Integrin-induced transcriptome alterations and hydrogel optimization for human wound healing. Stem Cells (Dayton, Ohio), 38(2), 231–245.

Article

PubMed

CAS

Google Scholar

Jin, M. H., Yu, N. N., Jin, Y. H., Mao, Y. Y., Feng, L., & Liu, Y., et al. (2021). Peroxiredoxin II with dermal mesenchymal stem cells accelerates wound healing. Aging, 13(10), 13926–13940.

Article

PubMed

PubMed Central

CAS

Google Scholar

Yaghoubi, Y., Zamani, M., Naimi, A., Hassanzadeh, A., Gharibeh, N., & Madani, J., et al. (2020). Human CD34+ hematopoietic stem cells culture in humanized culture medium for cell therapy. Gene Reports, 20, 100718.

Article

CAS

Google Scholar

Hajimortezayi, Z., Daei, N., Gholizadeh, N., Zakeri, M., Alhili, F., & Hasanzadeh, S., et al. (2024). Fat transplant: Amazing growth and regeneration of cells and rebirth with the miracle of fat cells. Journal of Cosmetic Dermatology, 23(4), 1141–1149.

Article

PubMed

Google Scholar

Shoja, A., Sani, M., Mirzohreh, S. T., Ebrahimi, M. J., Moafi, M., Balaghirad, N., et al. (2024). Dental stem cells improve memory and reduce cell death in rat seizure model. Anatomical Science International.

Kim, J. Y., & Suh, W. (2010). Stem cell therapy for dermal wound healing. International Journal of Stem Cells, 3(1), 29–31.

Article

PubMed

PubMed Central

Google Scholar

Zamani, M., Yaghoubi, Y., Naimi, A., Hassanzadeh, A., Pourakbari, R., & Aghebati-Maleki, L., et al. (2021). Humanized Culture Medium for Clinical-Grade Generation of Erythroid Cells from Umbilical Cord Blood CD34(+) Cells. Advanced Pharmaceutical Bulletin, 11(2), 335–342.

PubMed

CAS

Google Scholar

Malekan, M., Haass, N. K., Rokni, G. R., Gholizadeh, N., Ebrahimzadeh, M. A., & Kazeminejad, A. (2024). VEGF/VEGFR axis and its signaling in melanoma: Current knowledge toward therapeutic targeting agents and future perspectives. Life Sciences, 345, 122563.

Article

PubMed

CAS

Google Scholar

Yang, J., Chen, Z., Pan, D., Li, H., & Shen, J. (2020). Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration. International Journal of Nanomedicine, 15, 5911–5926.

Article

PubMed

PubMed Central

CAS

Google Scholar

Esteban-Vives, R., Ziembicki, J., Sun Choi, M., Thompson, R. L., Schmelzer, E., & Gerlach, J. C. (2019). Isolation and Characterization of a Human Fetal Mesenchymal Stem Cell Population: Exploring the Potential for Cell Banking in Wound Healing Therapies. Cell Transplantation, 28(11), 1404–1419.

Article

PubMed

PubMed Central

Google Scholar

Yang, Z., He, C., He, J., Chu, J., Liu, H., & Deng, X. (2018). Curcumin-mediated bone marrow mesenchymal stem cell sheets create a favorable immune microenvironment for adult full-thickness cutaneous wound healing. Stem Cell Research and Therapy, 9(1), 21.

Article

PubMed

PubMed Central

CAS

Google Scholar

Hosni Ahmed, H., Rashed, L. A., Mahfouz, S., Elsayed Hussein, R., Alkaffas, M., & Mostafa, S., et al. (2017). Can mesenchymal stem cells pretreated with platelet-rich plasma modulate tissue remodeling in a rat with burned skin? Biochemistry and Cell Biology = Biochimie et biologie cellulaire, 95(5), 537–548.

Article

PubMed

CAS

Google Scholar

Liang, X., Ding, Y., Zhang, Y., Tse, H. F., & Lian, Q. (2014). Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplantation, 23(9), 1045–1059.

Article

PubMed

Google Scholar

Maxson, S., Lopez, E. A., Yoo, D., Danilkovitch-Miagkova, A., & Leroux, M. A. (2012). Concise review: role of mesenchymal stem cells in wound repair. STEM CELLS Translational Medicine, 1(2), 142–149.

Article

PubMed

PubMed Central

CAS

Google Scholar

Luz-Crawford, P., Djouad, F., Toupet, K., Bony, C., Franquesa, M., & Hoogduijn, M. J., et al. (2016). Mesenchymal Stem Cell-Derived Interleukin 1 Receptor Antagonist Promotes Macrophage Polarization and Inhibits B Cell Differentiation. Stem Cells (Dayton, Ohio), 34(2), 483–492.

Article

PubMed

CAS

Google Scholar

Abumaree, M. H., Al Jumah, M. A., Kalionis, B., Jawdat, D., Al Khaldi, A., & Abomaray, F. M., et al. (2013). Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Reviews and Reports, 9(5), 620–641.

Article

PubMed

CAS

Google Scholar

Colwell, A. S., Beanes, S. R., Soo, C., Dang, C., Ting, K., & Longaker, M. T., et al. (2005). Increased angiogenesis and expression of vascular endothelial growth factor during scarless repair. Plastic and Reconstructive Surgery, 115(1), 204–212.

Article

PubMed

CAS

Google Scholar

Hu, M. S., Borrelli, M. R., Lorenz, H. P., Longaker, M. T., & Wan, D. C. (2018). Mesenchymal Stromal Cells and Cutaneous Wound Healing: A Comprehensive Review of the Background, Role, and Therapeutic Potential. Stem Cells International, 2018, 6901983.

Article

PubMed

PubMed Central

Google Scholar

Wang, L., Hu, L., Zhou, X., Xiong, Z., Zhang, C., & Shehada, H. M. A., et al. (2021). Author Correction: Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Science Report, 11(1), 3245.

Article

CAS

Google Scholar

Jiang, T., Wang, Z., & Sun, J. (2020). Human bone marrow mesenchymal stem cell-derived exosomes stimulate cutaneous wound healing mediates through TGF-β/Smad signaling pathway. Stem Cell Research and Therapy, 11(1), 198.

Article

PubMed

PubMed Central

CAS

Google Scholar

Shi, R., Jin, Y., Hu, W., Lian, W., Cao, C., & Han, S., et al. (2020). Exosomes derived from mmu_circ_0000250-modified adipose-derived mesenchymal stem cells promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1-mediated autophagy. American Journal of Physiology Cell Physiology, 318(5), C848–C856.

Article

PubMed

CAS

Google Scholar

Zhang, Y., Han, F., Gu, L., Ji, P., Yang, X., & Liu, M., et al. (2020). Adipose mesenchymal stem cell exosomes promote wound healing through accelerated keratinocyte migration and proliferation by activating the AKT/HIF-1α axis. Journal of Molecular Histology, 51(4), 375–383.

Article

PubMed

Google Scholar

Zhou, Y., Zhao, B., Zhang, X.-L., Lu, Y.-J., Lu, S.-T., & Cheng, J., et al. (2021). Combined topical and systemic administration with human adipose-derived mesenchymal stem cells (hADSC) and hADSC-derived exosomes markedly promoted cutaneous wound healing and regeneration. Stem Cell Research & Therapy, 12(1), 257.

Article

CAS

Google Scholar

Krasnodembskaya, A., Song, Y., Fang, X., Gupta, N., Serikov, V., & Lee, J. W., et al. (2010). Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells (Dayton, Ohio), 28(12), 2229–2238.

Article

PubMed

CAS

Google Scholar

Mei, S. H., Haitsma, J. J., Dos Santos, C. C., Deng, Y., Lai, P. F., & Slutsky, A. S., et al. (2010). Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. American Journal of Respiratory and Critical Care Medicine, 182(8), 1047–1057.

Article

PubMed

CAS

Google Scholar

Manier, S., Liu, C. J., Avet-Loiseau, H., Park, J., Shi, J., & Campigotto, F., et al. (2017). Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood, 129(17), 2429–2436.

Article

PubMed

PubMed Central

CAS

Google Scholar

Tutuianu, R., Rosca, A. M., Iacomi, D. M., Simionescu, M., Titorencu, I. (2021). Human Mesenchymal Stromal Cell-Derived Exosomes Promote In Vitro Wound Healing by Modulating the Biological Properties of Skin Keratinocytes and Fibroblasts and Stimulating Angiogenesis. International Journal of Molecular Sciences, 22(12), 6239

Guo, L., Du, J., Yuan, D.-F., Zhang, Y., Zhang, S., & Zhang, H.-C., et al. (2020). Optimal H2O2 preconditioning to improve bone marrow mesenchymal stem cells’ engraftment in wound healing. Stem Cell Research & Therapy, 11(1), 434.

Article

CAS

Google Scholar

Heo, J. S., Kim, S., Yang, C. E., Choi, Y., Song, S. Y., & Kim, H. O. (2021). Human Adipose Mesenchymal Stem Cell-Derived Exosomes: A Key Player in Wound Healing. Tissue Engineering and Regenerative Medicine, 18(4), 537–548.

Article

PubMed

PubMed Central

CAS

Google Scholar

Heo, J. S., Choi, Y., & Kim, H. O. (2019). Adipose-Derived Mesenchymal Stem Cells Promote M2 Macrophage Phenotype through Exosomes. Stem Cells International, 2019, 7921760.

Article

PubMed

PubMed Central

Google Scholar

Koken, G. Y., Abamor, E. S., Allahverdiyev, A., & Karaoz, E. (2022). Wharton Jelly Derived Mesenchymal Stem Cell’s Exosomes Demonstrate Significant Antileishmanial and Wound Healing Effects in Combination with Aloe-Emodin: An in Vitro Study. Journal of Pharmaceutical Sciences, 111(12), 3232–3242.

Article

PubMed

CAS

Google Scholar

Bakadia, B. M., Qaed Ahmed, A. A., Lamboni, L., Shi, Z., Mutu Mukole, B., & Zheng, R., et al. (2023). Engineering homologous platelet-rich plasma, platelet-rich plasma-derived exosomes, and mesenchymal stem cell-derived exosomes-based dual-crosslinked hydrogels as bioactive diabetic wound dressings. Bioactive Materials, 28, 74–94.

Article

PubMed

PubMed Central

CAS

Google Scholar

Zhang, X., Ding, P., Chen, Y., Lin, Z., Zhao, X., & Xie, H. (2023). Human umbilical cord mesenchymal stem cell-derived exosomes combined with gelatin methacryloyl hydrogel to promote fractional laser injury wound healing. The International Wound Journal, 20(10), 4040–4049.

Article

PubMed

Google Scholar

Wu, D., Tao, S., Zhu, L., Zhao, C., & Xu, N. (2024). Chitosan Hydrogel Dressing Loaded with Adipose Mesenchymal Stem Cell-Derived Exosomes Promotes Skin Full-Thickness Wound Repair. ACS Applied Bio Materials, 7(2), 1125–1134.

Article

PubMed

CAS

Google Scholar

Yang, S., Chen, S., Zhang, C., Han, J., Lin, C., & Zhao, X., et al. (2023). Enhanced therapeutic effects of mesenchymal stem cell-derived extracellular vesicles within chitosan hydrogel in the treatment of diabetic foot ulcers. Journal of Materials Science: Materials in Medicine, 34(9), 43.

PubMed

CAS

Google Scholar

Wang, Y., Song, P., Wu, L., Su, Z., Gui, X., & Gao, C., et al. (2023). In situ photo-crosslinked adhesive hydrogel loaded with mesenchymal stem cell-derived extracellular vesicles promotes diabetic wound healing. Journal of Materials Chemistry B, 11(4), 837–851.

Article

PubMed

CAS

Google Scholar

Lin, H., Chen, H., Zhao, X., Chen, Z., Zhang, P., & Tian, Y., et al. (2021). Advances in mesenchymal stem cell conditioned medium-mediated periodontal tissue regeneration. Journal of Translational Medicine, 19(1), 456.

Article

PubMed

PubMed Central

Google Scholar

Gunawardena, T. N. A., Rahman, M. T., Abdullah, B. J. J., & Abu Kasim, N. H. (2019). Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 13(4), 569–586.

Article

PubMed

CAS

Google Scholar

Delfi, I., Wood, C. R., Johnson, L. D. V., Snow, M. D., Innes, J. F., Myint, P., et al. (2020). An In Vitro Comparison of the Neurotrophic and Angiogenic Activity of Human and Canine Adipose-Derived Mesenchymal Stem Cells (MSCs): Translating MSC-Based Therapies for Spinal Cord Injury. Biomolecules, 10(9), 1301.

Jin, S., Yang, C., Huang, J., Liu, L., Zhang, Y., & Li, S., et al. (2020). Conditioned medium derived from FGF-2-modified GMSCs enhances migration and angiogenesis of human umbilical vein endothelial cells. Stem Cell Research & Therapy, 11(1), 68.

Article

CAS

Google Scholar

Joseph, A., Baiju, I., Bhat, I. A., Pandey, S., Bharti, M., & Verma, M., et al. (2020). Mesenchymal stem cell-conditioned media: A novel alternative of stem cell therapy for quality wound healing. Journal of Cellular Physiology, 235(7-8), 5555–5569.

Article

PubMed

CAS

Google Scholar

Alireza, P., Rozita, A., Seyed Kazem, S., Mohammad Sadegh, S.-Z., Shahla, D., Sepideh Ranjbar, K., et al. (2020). Effect of Dextrose Prolotherapy, Platelet Rich Plasma and Autologous Conditioned Serum on Knee Osteoarthritis: A Randomized Clinical Trial. Iranian Journal of Allergy, Asthma and Immunology. 19(3), 243–252.

Pishgahi, A., Zamani, M., Mehdizadeh, A., Roshangar, L., Afkham-Daghdaghan, M., & Pourabbas, B., et al. (2022). The therapeutic effects of autologous conditioned serum on knee osteoarthritis: an animal model. BMC Research Notes, 15(1), 277.

Article

PubMed

PubMed Central

CAS

Google Scholar

Zhang, Z., Li, Z., Li, Y., Wang, Y., Yao, M., & Zhang, K., et al. (2021). Sodium alginate/collagen hydrogel loaded with human umbilical cord mesenchymal stem cells promotes wound healing and skin remodeling. Cell and Tissue Research, 383(2), 809–821.

Article

PubMed

CAS

Google Scholar

Sukmana, B. I., Margiana, R., Almajidi, Y. Q., Almalki, S. G., Hjazi, A., & Shahab, S., et al. (2023). Supporting wound healing by mesenchymal stem cells (MSCs) therapy in combination with scaffold, hydrogel, and matrix; State of the art. Pathology – Research and Practice, 248, 154575.

Article

PubMed

CAS

Google Scholar

Daneste, H., Mohammadzadeh Boukani, L., Ramezani, N., Asadi, F., Zaidan, H. K., & Sadeghzade, A., et al. (2023). Combination therapy along with mesenchymal stem cells in wound healing; the state of the art. Advances in Medical Sciences, 68(2), 441–449.

Article

PubMed

CAS

Google Scholar

Huang, J. N., Cao, H., Liang, K. Y., Cui, L. P., & Li, Y. (2022). Combination therapy of hydrogel and stem cells for diabetic wound healing. World J Diabetes, 13(11), 949–961.

Article

PubMed

PubMed Central

Google Scholar

Sharma, S., Kulkarni, C., Kulkarni, M. M., Ali, R., Porwal, K., & Chattopadhyay, N., et al. (2020). Tripeptide-induced modulation of mesenchymal stem cell biomechanics stimulates proliferation and wound healing. Chemical Communications, 56(20), 3043–3046.

Article

PubMed

CAS

Google Scholar

Safaeinejad, Z., Nabiuni, M., Peymani, M., Ghaedi, K., Nasr-Esfahani, M. H., & Baharvand, H. (2017). Resveratrol promotes human embryonic stem cells self-renewal by targeting SIRT1-ERK signaling pathway. European Journal of Cell Biology, 96(7), 665–672.

Article

PubMed

CAS

Google Scholar

Peltz, L., Gomez, J., Marquez, M., Alencastro, F., Atashpanjeh, N., & Quang, T., et al. (2012). Resveratrol exerts dosage and duration dependent effect on human mesenchymal stem cell development. PloS One, 7(5), e37162.

Article

PubMed

PubMed Central

CAS

Google Scholar

Ganbarjeddi, S., Azimi, A., Zadi Heydarabad, M., Hemmatzadeh, M., Mohammadi, S., & Mousavi Ardehaie, R., et al. (2020). Apoptosis Induced by Prednisolone Occurs without Altering the Promoter Methylation of BAX and BCL-2 Genes in Acute Lymphoblastic Leukemia Cells CCRF-CEM. Asian Pacific Journal of Cancer Prevention, 21(2), 523–529.

Article

PubMed

PubMed Central

CAS

Google Scholar

Danaii, S., Abolhasani, R., Soltani-Zangbar, M. S., Zamani, M., Mehdizadeh, A., & Amanifar, B., et al. (2020). Oxidative stress and immunological biomarkers in Ankylosing spondylitis patients. Gene Reports, 18, 100574.

Article

Google Scholar

Jin, M. H., Yu, J. B., Sun, H. N., Jin, Y. H., Shen, G. N., Jin, C. H., et al. (2019). Peroxiredoxin II Maintains the Mitochondrial Membrane Potential against Alcohol-Induced Apoptosis in HT22 Cells. Antioxidants (Basel, Switzerland), 9(1), 1.

Han, Y. H., Jin, M. H., Jin, Y. H., Yu, N. N., Liu, J., & Zhang, Y. Q., et al. (2020). Deletion of Peroxiredoxin II Inhibits the Growth of Mouse Primary Mesenchymal Stem Cells Through Induction of the G(0)/G(1) Cell-cycle Arrest and Activation of AKT/GSK3β/β-Catenin Signaling. In Vivo (Athens, Greece), 34(1), 133–141.

PubMed

CAS

Google Scholar

Wang, L., & Ganly, I. (2014). The oral microbiome and oral cancer. Clinics in Laboratory Medicine, 34(4), 711–719.

Article

PubMed

Google Scholar

Herremans, K. M., Riner, A. N., Cameron, M. E., McKinley, K. L., Triplett, E. W., & Hughes, S. J., et al. (2022). The oral microbiome, pancreatic cancer and human diversity in the age of precision medicine. Microbiome, 10(1), 93.

Article

PubMed

PubMed Central

Google Scholar

Sarao, L. K., & Arora, M. (2017). Probiotics, prebiotics, and microencapsulation: A review. Critical Reviews in Food Science and Nutrition, 57(2), 344–371.

Article

PubMed

CAS

Google Scholar

Han, N., Jia, L., Guo, L., Su, Y., Luo, Z., & Du, J., et al. (2020). Balanced oral pathogenic bacteria and probiotics promoted wound healing via maintaining mesenchymal stem cell homeostasis. Stem Cell Research & Therapy, 11(1), 61.

Article

CAS

Google Scholar

Kasuya, A., & Tokura, Y. (2014). Attempts to accelerate wound healing. Journal of Dermatological Science, 76(3), 169–172.

Article

PubMed

Google Scholar

Lindley, L. E., Stojadinovic, O., Pastar, I., & Tomic-Canic, M. (2016). Biology and Biomarkers for Wound Healing. Plastic and Reconstructive Surgery, 138(3 Suppl), 18s–28s.

Article

PubMed

CAS

Google Scholar

Su, Y., Chen, C., Guo, L., Du, J., Li, X., & Liu, Y. (2018). Ecological Balance of Oral Microbiota Is Required to Maintain Oral Mesenchymal Stem Cell Homeostasis. Stem Cells (Dayton, Ohio), 36(4), 551–561.

Article

PubMed

CAS

Google Scholar

Noël, D., Caton, D., Roche, S., Bony, C., Lehmann, S., & Casteilla, L., et al. (2008). Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Experimental Cell Research, 314(7), 1575–1584.

Article

PubMed

Google Scholar

Hassanzadeh, A., Altajer, A. H., Rahman, H. S., Saleh, M. M., Bokov, D. O., & Abdelbasset, W. K., et al. (2021). Mesenchymal Stem/Stromal Cell-Based Delivery: A Rapidly Evolving Strategy for Cancer Therapy. Frontiers in Cell and Developmental Biology, 9, 686453.

Article

PubMed

PubMed Central

Google Scholar

Ashour, R. H., Saad, M.-A., Sobh, M.-A., Al-Husseiny, F., Abouelkheir, M., & Awad, A., et al. (2016). Comparative study of allogenic and xenogeneic mesenchymal stem cells on cisplatin-induced acute kidney injury in Sprague-Dawley rats. Stem Cell Research & Therapy, 7(1), 126.

Article

Google Scholar

Li, C., Zhao, H., Cheng, L., & Wang, B. (2021). Allogeneic vs. autologous mesenchymal stem/stromal cells in their medication practice. Cell & Bioscience, 11(1), 187.

Article

CAS

Google Scholar

Shariati, A., Nemati, R., Sadeghipour, Y., Yaghoubi, Y., Baghbani, R., & Javidi, K., et al. (2020). Mesenchymal stromal cells (MSCs) for neurodegenerative disease: A promising frontier. European Journal of Cell Biology, 99(6), 151097.

Article

PubMed

CAS

Google Scholar

Hu, C. H., Tseng, Y. W., Chiou, C. Y., Lan, K. C., Chou, C. H., & Tai, C. S., et al. (2019). Bone marrow concentrate-induced mesenchymal stem cell conditioned medium facilitates wound healing and prevents hypertrophic scar formation in a rabbit ear model. Stem Cell Research and Therapy, 10(1), 275.

Article

PubMed

PubMed Central

Google Scholar

Ma, T., Fu, B., Yang, X., Xiao, Y., & Pan, M. (2019). Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing. Journal of Cellular Biochemistry, 120(6), 10847–10854.

Article

PubMed

CAS

Google Scholar

Qiu, X., Liu, J., Zheng, C., Su, Y., Bao, L., & Zhu, B., et al. (2020). Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis. Cell Proliferation, 53(8), e12830.

Article

PubMed

PubMed Central

CAS

Google Scholar

Li, X., Xie, X., Lian, W., Shi, R., Han, S., & Zhang, H., et al. (2018). Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Experimental & Molecular Medicine, 50(4), 1–14.

Article

Google Scholar

Liang, X., Lin, F., Ding, Y., Zhang, Y., Li, M., & Zhou, X., et al. (2021). Conditioned medium from induced pluripotent stem cell-derived mesenchymal stem cells accelerates cutaneous wound healing through enhanced angiogenesis. Stem Cell Research & Therapy, 12(1), 295.

Article

CAS

Google Scholar

Li, X., Wang, Y., Shi, L., Li, B., Li, J., & Wei, Z., et al. (2020). Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes. Journal of Nanobiotechnology, 18(1), 113.

Article

PubMed

PubMed Central

CAS

Google Scholar

Shukla, A., Choudhury, S., Chaudhary, G., Singh, V., Prabhu, S. N., & Pandey, S., et al. (2021). Chitosan and gelatin biopolymer supplemented with mesenchymal stem cells (Velgraft®) enhanced wound healing in goats (Capra hircus): Involvement of VEGF, TGF and CD31. Journal of Tissue Viability, 30(1), 59–66.

Article

PubMed

Google Scholar

Chen, Z., Zhang, B., Shu, J., Wang, H., Han, Y., & Zeng, Q., et al. (2021). Human decellularized adipose matrix derived hydrogel assists mesenchymal stem cells delivery and accelerates chronic wound healing. Journal of Biomedical Materials Research Part A, 109(8), 1418–1428.

Article

PubMed

CAS

Google Scholar

Ni, X., Shan, X., Xu, L., Yu, W., Zhang, M., & Lei, C., et al. (2021). Adipose-derived stem cells combined with platelet-rich plasma enhance wound healing in a rat model of full-thickness skin defects. Stem Cell Research and Therapy, 12(1), 226.

Article

PubMed

PubMed Central

CAS

Google Scholar

Ebrahim, N., Dessouky, A. A., Mostafa, O., Hassouna, A., Yousef, M. M., & Seleem, Y., et al. (2021). Adipose mesenchymal stem cells combined with platelet-rich plasma accelerate diabetic wound healing by modulating the Notch pathway. Stem Cell Research and Therapy, 12(1), 392.

Article

PubMed

PubMed Central

CAS

Google Scholar

Song, Y., You, Y., Xu, X., Lu, J., Huang, X., & Zhang, J., et al. (2023). Adipose-Derived Mesenchymal Stem Cell-Derived Exosomes Biopotentiated Extracellular Matrix Hydrogels Accelerate Diabetic Wound Healing and Skin Regeneration. Advanced Science, 10(30), e2304023.

Article

PubMed

Google Scholar

Martin, K. E., Hunckler, M. D., Chee, E., Caplin, J. D., Barber, G. F., & Kalelkar, P. P., et al. (2023). Hydrolytic hydrogels tune mesenchymal stem cell persistence and immunomodulation for enhanced diabetic cutaneous wound healing. Biomaterials, 301, 122256.

Article

PubMed

PubMed Central

CAS

Google Scholar

Lashkari, M., Rahmani, M., Yousefpoor, Y., Ahmadi-Zeidabadi, M., Faridi-Majidi, R., & Ameri, Z., et al. (2023). Cell-based wound dressing: Bilayered PCL/gelatin nanofibers-alginate/collagen hydrogel scaffold loaded with mesenchymal stem cells. International Journal of Biological Macromolecules, 239, 124099.

Article

PubMed

CAS

Google Scholar

Khandan-Nasab, N., Mahdipour, E., Askarian, S., Kalantari, M. R., Ramezanian, N., & Kazemi Oskuee, R. (2023). Design and characterization of adipose-derived mesenchymal stem cell loaded alginate/pullulan/hyaluronic acid hydrogel scaffold for wound healing applications. International Journal of Biological Macromolecules, 241, 124556.

Article

PubMed

CAS

Google Scholar

Kwon, J. W., Savitri, C., An, B., Yang, S. W., & Park, K. (2023). Mesenchymal stem cell-derived secretomes-enriched alginate/ extracellular matrix hydrogel patch accelerates skin wound healing. Biomaterials Research, 27(1), 107.

Article

PubMed

PubMed Central

CAS

Google Scholar

Tammam, B. M. H., Habotta, O. A., El-Khadragy, M., Abdel Moneim, A. E., & Abdalla, M. S. (2023). Therapeutic role of mesenchymal stem cells and platelet-rich plasma on skin burn healing and rejuvenation: A focus on scar regulation, oxido-inflammatory stress and apoptotic mechanisms. Heliyon, 9(9), e19452.

Article

PubMed

PubMed Central

CAS

Google Scholar

Liu, L., Yao, S., Mao, X., Fang, Z., Yang, C., & Zhang, Y. (2023). Thermosensitive hydrogel coupled with sodium ascorbyl phosphate promotes human umbilical cord-derived mesenchymal stem cell-mediated skin wound healing in mice. Scientific Reports, 13(1), 11909.

Article

PubMed

PubMed Central

CAS

Google Scholar

Iacopetti, I., Perazzi, A., Patruno, M., Contiero, B., Carolo, A., & Martinello, T., et al. (2023). Assessment of the quality of the healing process in experimentally induced skin lesions treated with autologous platelet concentrate associated or unassociated with allogeneic mesenchymal stem cells: preliminary results in a large animal model. Frontiers in Veterinary Science, 10, 1219833.

Article

PubMed

PubMed Central

Google Scholar

Download references

Author information
Authors and Affiliations
Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

Soheil Nouri

Orthopedic and Pelvic Ward, Mortaz Hospital, Yazd, Iran

Shahram Shokraneh

Faculty of Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran

Paradise Fatehi Shalamzari

College of Dentistry, Alnoor University, Mosul, Iraq

Mareb Hamed Ahmed

Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq

Usama Kadem Radi

Al-Zahrawi University College, Karbala, Iraq

Ameer Hassan Idan

Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Mohammad Javad Ebrahimi & Maral Moafi

Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

Nasim Gholizadeh

Contributions
All authors contributed to the conception and the main idea of the work. S.N., S.S., P.F.S., M.H.A., U.K.R. drafted the main text, figures, and tables. N.G. and M.M. supervised the work and provided comments and additional scientific information. A.H.I. and M.J.E. reviewed and revised the text. All authors read and approved the final version of the work to be published.

Corresponding author
Correspondence to Nasim Gholizadeh.

Ethics declarations
Conflict of Interest
The authors declare no competing interests.

Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Leave a Reply

Your email address will not be published. Required fields are marked *

Recent Post

Tags

Login

Access your account activation form, billing and payments, and downloads.

Free Lab Tour & Consultation

Take the First Step Towards Your Healthier Future!